edexcel

Mark Scheme (Results)
Summer 2013

GCSE Chemistry (5CH2F) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk for our BTEC qualifications.
Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

If you have any subject specific questions about this specification that require the help of a subject specialist, you can speak directly to the subject team at Pearson.
Their contact details can be found on this link: www.edexcel.com/teachingservices.

You can also use our online Ask the Expert service at www.edexcel.com/ask. You will need an Edexcel username and password to access this service.

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2013
Publications Code UG036872
All the material in this publication is copyright
© Pearson Education Ltd 2013

General Marking Guidance

- \quad All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- For questions worth more than one mark, the answer column shows how partial credit can be allocated. This has been done by the inclusion of part marks eg (1).
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- Write legibly, with accurate spelling, grammar and punctuation in order to make the meaning clear
- \quad Select and use a form and style of writing appropriate to purpose and to complex subject matter
- Organise information clearly and coherently, using specialist vocabulary when appropriate.

Question Number	Answer	Acceptable answers	Mark
$\mathbf{1 (a)}$	B elements		(1)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{1 (b)}$	D alkali metals		(1)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{1 (c) (i) \mathbf { 1 }}$	any value in range 1.45 to 2.99	any answer which, to 1 sf, is in the range	(1)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{1 (c) (i) 2}$	Kr	Reject KR, kr	(1)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{1 (c) (i) ~ 3 ~}$	no reaction	'nothing'	(1)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{1 (c) (i i)}$	An explanation linking any two of:		
	- argon is \{inert / unreactive\} (1) argon does not react with \{metal/filament\}/ \{metal/ filament or oxygen / ORA (1) atom has \{eight electrons in outer shell / full (outer) shell\} (1)	ignore noble gas doesn't react with anything argon does not corrode the metal	ignore references to electrical conductivity

Question Number	Answer	Acceptable answers	Mark
1(d)	all 3 correct - 2 marks any two correct - 1 mark one correct - 0 marks	if two answer lines from one element, then ignore	(2)

Question Number	Answer	Acceptable answers	Mark
2(a)	A description to include two from	ignore inverted oil/water layers	
	allow layers to \{form / separate\} / liquids to separate(1) - operate tap / OWTTE(1) - run out one layer / OWTTE(1) pour remaining upper layer from top / run out second layer(1)	discard interface	

Question Number	Answer	Acceptable answers	Mark
2(b)	A description to include		
	- green (1) • (and) red (1)	\{combination of / mixture of / two colours (1) note: if all three colours mentioned (1)	(2)

Question Number	Answer	Acceptable answers	Mark
2(c)	An explanation to include three from - \{sodium chloride / ionic compound\} - bulb lights / \{sucrose / covalent compound\} - bulb does not light up (1) - sodium chloride (solution) \{conducts / ions present\} - sucrose (solution) \{does not conduct / no ions present (1)	ignore references to electrolytic processes circuit will work (in place of bulb lights) / ORA	(3)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{2 (d)}$	$2 \times 1+16(=18)$		$\mathbf{(1)}$

Question Number	Answer	Acceptable answers	Mark
$\mathbf{3 (a)}$	C smaller than the mass of a proton		$\mathbf{(1)}$

Question Number	Answer	Acceptable answers	Mark
3(b)	An description linking	ignore references to electrons in shells / charges on particles	
• 8 protons (1) • (and) $\{17-8 / 9\}$ neutrons (1) if electrons in nucleus max 1 protons and neutrons with incorrect numbers (1)	(2)		

Question Number	Answer	Acceptable answers	Mark
$\mathbf{3 (c)}$	Explanation linking		
	(both have) same number (of electrons) in outer shell(1) (electrons in outer shell) (consequent on first point) (1)	'they both have 6 in the outer or diagrams alone max 1 shell' scores both marks allow 'both need 2 (more) (electrons) to fill outer shell' for both marks	(2)

Question Number	Answer	Acceptable answers	Mark
3(d)	A description to include		
	• 2.8 (in 1 st and 2 $2^{\text {nd }}$ shell)(1)	suitable diagram in place of $2.8(1) .5(1)$	
		electrons in \{shells / orbits / rings\}(1)	(2)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{3 (e) (\mathbf { i })}$	A description to include		
	electron(s) shared (1) (pair(s) of $/ \mathbf{t w o \}}$ (electrons) (1)	can be shown in a diagram of a covalent bond any mention of ions scores zero	(2)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{3 (e) (i i)}$	$\mathrm{P}_{2} \mathrm{O}_{5}$	Reject P2O5 / P ${ }^{2} \mathrm{O}^{5}$	(1)

Question Number	Answer	Acceptable answers	Mark		
4(a)	Sodium carbonate + calcium nitrate \rightarrow sodium nitrate + calcium carbonate (2)	ignore solution / state symbols ignore incorrect attempts at balanced equation ignore mixtures of words and formulae			
	LHS (1)				
RHS (1)				\quad (2)	
:---					

Question Number	Answer	Acceptable answers	Mark
$\mathbf{4 (b) (i)}$	C orange-red		$\mathbf{(1)}$

Question Number	Answer	Acceptable answers	Mark
4(b)(ii)	A description including two points from	CLEAN $\bullet \quad$ clean (flame test) wire with (hydrochloric) acid (1)	• moisten splint

Question Number	Answer	Acceptable answers	Mark		
$\mathbf{4 (c) (i)}$	$40 / 44(1)(=0.909)$	correct answer (2)			
$($ any fraction $\times 100(1)(=90.9 /$					
$90.91 / 91(\%))$				Ignore 90(\%)	(2)
:---					

Question Number	Answer	Acceptable answers	Mark
4(c)(ii)	reaction is incomplete / not hot enough / not heated for long enough / use of impure calcium carbonate	ignore \{gas escaping / not all collected / incorrect measurement	(1)

Question Number	Answer	Acceptable answers	Mark
(d)	D have high melting points		(1)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{5 (a) (i)}$	BaSO_{4}	$\mathrm{SO}_{4} \mathrm{Ba}$ ignore charges unless incorrect	(1)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{5 (a) (i i)}$	charged particle	charged atom / \{particle/atom(s) \} that has gained or lost electrons ignore any stated charges	(1)

Question Number	Answer	Acceptable answers	Mark
5(b)	An explanation linking two of the following points:	barium sulfate does not dissolve (in water) (1)	ignore barium sulfate is insoluble in water \{mix with / enter\} blood allow 'barium sulfate does not dissolve into the bloodstream' for 2 marks
is not absorbed into blood / body (1) passes through body (unchanged) (1)	allow 'it is insoluble so it is non- toxic' for one mark	(2)	

Question Number		
QWC	*5(c)	A description including some of the following points reactants - dissolve reactants (in water) - mix reactants / solutions - use of appropriate apparatus - stir separate product - filter - use of filter funnel and paper making pure dry salt - solid on filter paper - wash with water - dry in oven / leave to dry / in a warm place
Level	0	No rewardable content
1	1-2	- a limited description e.g. mix the two reactants in a beaker OR wash solid and leave to dry. - the answer communicates ideas using simple language and uses limited scientific terminology - spelling, punctuation and grammar are used with limited accuracy
2	3-4	- a simple description e.g. mix solutions of the reactants in a beaker and then filter. - the answer communicates ideas showing some evidence of clarity and organisation and uses scientific terminology appropriately - spelling, punctuation and grammar are used with some accuracy
3	5-6	- a detailed description e.g. mix solutions of the reactants in a beaker then filter, wash solid and leave to dry. - the answer communicates ideas clearly and coherently uses a range of scientific terminology accurately - spelling, punctuation and grammar are used with few errors

Question Number	Answer	Acceptable answers	Mark
$\mathbf{5 (d)}$	$\mathrm{Ba}+\mathrm{Cl}_{2}(\rightarrow)(1) \rightarrow \mathrm{BaCl}_{2}(1)$ reactants =1 product $=1$	max 1 for any incorrectly balanced equation	(2)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{6 (a) (i)}$	corrosive	damages skin / clothes causes burns	(1)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{6 (a) (i i)}$	C neutralisation		(1)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{6 (b)}$	An explanation to include	(substance that) increases rate / speeds up reaction (1) without being \{used up / changed\} itself (1)	Ignore slows down a reaction reject provides energy / heat (for $2^{\text {nd }}$ mark)

Question Number	Answer	Acceptable answers	Mark		
$\mathbf{6 (c)}$	A description to include	smaller pieces have larger			
surface area / ORA (1)					
- larger surface area, \{higher /					
faster\} rate (1)					ORAsmaller pieces give faster rate (1) ORA Ollow 'bigger surface area produces more carbon dioxide' (or similarly phrased) for one mark
:---					

Question Number		Indicative Content	Mark
QWC	* 6(d)	A description / comparison/ explanation / etc including some of the following points method - what needs to be carried out - dilute the acid - (to make) different concentrations / stated concentration values - add magnesium to acid - in suitable container - equal volumes of the acids - equal lengths of magnesium observations - to make - observe/ count bubbles - highest concentration magnesium reacts, lowest concentration magnesium does not react - observe/ time magnesium disappearing - use of timer - measure volume gas produced - measure decrease in mass conclusion - evidence gathered or seen - formed bubbles faster - magnesium disappears faster - gas produced faster - mass lost faster	(6)
Level	0	No rewardable content	
1	1-2	- a limited description e.g. add magnesium to acid and time the reaction - the answer communicates ideas using simple language and uses limited scientific terminology - spelling, punctuation and grammar are used with limited accuracy	
2	3-4	- a simple description e.g. dilute the acid, add magnesium to both acid solutions and more concentrated one bubbles faster or magnesium reacts quicker - the answer communicates ideas showing some evidence of clarity and organisation and uses scientific terminology appropriately - spelling, punctuation and grammar are used with some accuracy	
3	5-6	- a detailed description e.g. add magnesium to different concentrations of acids in beakers: lower concentration longer time therefore slower reaction - the answer communicates ideas clearly and coherently uses a range of scientific terminology accurately - spelling, punctuation and grammar are used with few errors	

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code UG036872 Summer 2013

Llywodraeth Cynulliad Cymru
Welsh Assembly Government
For more information on Edexcel qualifications, please visit our website www.edexcel.com

Rewarding Learning

